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Abstract

Many studies have shown indirect effects of academic research by linking academic

research to firm patents. However, since the Bayh-Dole act, universities are allowed

to patent inventions that were funded by federal money and to retain the royalties that

these patents generate. As a consequence, universities now are interested in

protecting their ‘profitable’ discoveries, just like any commercial firm doing R&D. In

this paper, we apply the econometric techniques traditionally used to estimate the

patent production function of firms on data for American universities. We find that

more money spent on academic research leads to more university patents, with

elasticities that are similar to those found for commercial firms.
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Adam Jaffe for supplying data and the Belgian federal government for financial
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1) Introduction

Each year, several billions of US$ are spent on academic research. It is not surprising

then that several economists have searched for convincing evidence of the results of

these ‘investments’.

Some authors have highlighted the ‘academic’ effects of R&D expenditures: Adams

and Griliches (1996-1998) for example, relate the total number of papers and the

number of citations of university departments to the amount of research expenditures,

in order to find out whether there are decreasing, increasing or constant returns to

scale in the production of academic articles.

Others have focused on the effects on the ‘real’ or non-academic world. Such ‘real’

effects of academic research have been revealed by ‘economic-geography’-studies

that show how regions with universities differ from regions without universities. The

most influential of these is probably Jaffe’s study (1989) showing how academic

R&D expenditures increase the number of patents granted to firms. His results have

been extended to counts of ‘innovations’ by Acs et al. (1991) and Anselin et al.

(1997). In a similar spirit, Beeson and Montgomery (1993) looked at the effect of

universities’ R&D expenditures on the local labor-markets and Bania et al (1993)

linked university research to the creation of new firms.

As an alternative to this kind of studies that stress the geographic coexistence, some

authors have sent questionnaires to firms in which they asked how many of the firms’

innovations could not have been developed, or only with a substantial delay, in the

absence of academic research. Mansfield (1995,1998) reports that for a sample of big

US firms, about 10% of the firms’ innovations are made possible by academic

research. Beise and Stahl (1999) find a similar number using a large number of

German firms.

The above studies have in common that, rather than searching for any direct proofs,

they try to find spillover effects of academic research. The 1980 Bayh-Dole act,

however, allows universities to patent inventions that were funded by federal money

and to retain the royalties that these patents generate. Hence, while before the
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universities had little incentives to pursue the patenting of their research results, they

now can establish ownership-rights and generate a new source of income1.  Hence,

universities now should be interested in protecting their ‘profitable’ discoveries (just

like any commercial firm doing R&D) which makes it possible to look for direct real

effects of academic R&D.

2) The relationship between patents and R&D

Such direct effects can be revealed by estimating the relationship between a

university’s R&D expenditures and its number of patents. The same relationship but

at the ‘commercial firm’-level has generated an extensive literature. In a survey article

about patents, Griliches (1990) notes2:

“A major conclusion, emphasized by Pakes and Griliches, is that there is quite a

strong relationship between R&D and the number of patents received at the cross-

sectional level, across firms and industries… The same relationship, though still

statistically significant, is much weaker in the within-firms time series

dimension…Nevertheless, the evidence is quite strong that when a firm changes its

R&D expenditures, parallel changes occur also in its patent numbers.”   And further:

“The evidence  [of decreasing returns] is suggestive but not conclusive”.

More recent studies (Cincera (1997), Crepon and Duguet (1997a -1997b), with more

and more refined econometric methods, tend to confirm the above findings.

In this paper, we will use the same econometric techniques that are used in the

literature about firms such that it is possible to compare our estimates for universities

with those found for commercial firms3.

                                                          
1 Mowery and Ziedonis (1999) note that before Bayh-Dole, universities could negotiate ‘Institutional
Patent Agreements’ with the federal funding agencies.
2 This survey also looks at the drawbacks of patent-data: not all inventions are patented, patents differ
in quality and so on.
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3) Research about university patenting

While much has been written on the impact of the ‘entrepreneurial’ spirit on the

academic world (for example, Powell and Owen-Smith (1998) or Argyres and

Liebeskind (1998)), large-scale empirical studies on the patenting behavior of

universities are rare. We are aware of three studies: first, Henderson et al. (1998)

compare the patents granted to US universities between 1965 and 1988 with a random

sample of US patents. They found that universities tend to be more interested in drugs

and medical technologies and less interested in mechanical technologies. They further

showed that until 1982 or 1983 university patents used to receive more citations and

citations from more different patent classes. However, for the more recent periods,

there does not seem to be a ‘quality’ difference anymore, between university patents

and patents granted to other organizations.

Two other papers look, like us, at the relationship between money and university

patents. First, there is work by Foltz et al. (2000) that focuses on the production of

agricultural biotechnology patents. Using a cross-section of AUTM patent data, they

estimate a negative binomial model of the patent production function of 142

universities, using the number of ‘Office of Technology Transfer (OTT)’ staff, the

number of OTT staff squared, government-funded R&D expenditures, institutionally

funded R&D expenditures, industry-funded R&D expenditures and a reputational

ranking as dependent variables.  Next to the staff and rank variables, only government

supported R&D seem to matter.

Second, Payne and Siow (1999) use OLS and TOBIT to estimate the link between

federal R&D funds and patents for 58 universities and find a positive relationship.

However, for several reasons their results are difficult to compare with those of the

firm-patents literature. First, it is unlikely that the reputation of the university is

unrelated to the universities R&D expenditures, which implies that the Foltz et al.

(2000) estimate gives only the direct effect of R&D on patents (see Coupé (2000) for

the relationship between R&D expenditures and the reputational ratings). Second,

there is a clear sample selection: the 142 AUTM universities are mainly the bigger

universities as are the 58 universities used by Payne and Siow (1999).  We’ll use all
                                                                                                                                                                     
3 Jaffe and Lerner (1999) investigate similar issues for the laboratories of the US Department of
Energy.
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454 universities for which the NSF recorded positive R&D expenditures in 1990.

Third, neither the AUTM patent data nor the data used by Payne and Siow (1999) are

counts by year of application (in contrast to the data we will use). Traditionally, one

uses counts by year of application as this time-period should be closest to the date of

discovery and because the time between the application and the issuing of a patent

will differ over patents4. With these extensions, we follow the tradition for estimating

patent production functions for firms.

In addition, we will control for differences in the quality of university patents by

using citation counts. We will also split up the total expenditures and the total patents

in six categories that represent specific disciplines (following the methodology of

Jaffe (1989)). This will not only allow us to estimate the patent-R&D relationship for

different groups of patents but pooling these observations will also make it possible to

control for university-specific effects.

4) Data

a) Academic R&D

For R&D expenditures, we use data from the NSF  ‘Survey of Research

Expenditures’5. In this survey, “Item 2 requested total and Federally financed current

fund expenditures for separately budgeted R&D by detailed S&E field”. Under

“Current fund separately budgeted research and development (R&D) expenditures “,

the following is understood: ” Separately budgeted research and development (R&D)

expenditures include all funds expended for activities specifically organized to

produce research outcomes and commissioned by an agency either external to the

institution or separately budgeted by a unit of the organization. Included are

expenditures for research equipment purchased under research project awards from

current fund accounts. Also included are research funds for which an outside

organization, educational or other, is a subrecipient. Excluded are training grants,

public service grants, demonstration grants, and departmental research expenditures

that are not separately budgeted. Also excluded are any R&D expenditures in the

fields of education, law, humanities, music, the arts, physical education, library

science, as well as other non-science fields. Current funds are expenditures of funds
                                                          
4 Note however, that Payne and Siow (1999) use panel data and IV-estimation.
5 NSF: National Science Foundation
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available for current operations. Such expenditures include all unrestricted gifts and

restricted current funds to the extent that such funds were expended for current

operating purposes.”

These data have been used by all of the above-cited ‘economic geography’-studies.

None of these explicitly mentioned, however, that, in spite of the fact that the NSF

uses the heading ‘total R&D expenditures’, this is not necessarily equal to the total

expenditures for research as it only consists of separately budgeted research. To the

extent that for example the salary of professors is considered as an instructional cost

(the non-separately budgeted research expenditures are indeed counted under this

heading by the NSF), it understates the real expenditures6.

One could argue that smaller universities will have less accurate accounting practices

(for example salaries can be considered completely as instruction costs even if the

faculty is doing some research) which would bias the results towards decreasing

returns to scale. Note that a similar question has been raised with respect to firm-level

data: “Small firms are likely to be doing relatively more informal R&D, reporting less

of it, and hence providing the appearance of more patents per reported R&D dollar

(Griliches, 1990)7”.

Anyhow, Goldberger et al (1995) write: ‘this is a very carefully conducted survey

with attention given to the recordkeeping process at the institution to ensure

consistency from one year to the next.”

                                                          
6 A recent NSF (issue brief 99-317) report (foot)notes: ‘It does not include departmental research, and
thus excludes funds-notably for faculty salaries- in cases where research activities are not separately
budgeted’. And further: ‘Some of the growth in institutional R&D funds may be due to accounting
changes, including both a shift of departmental research to separately budgeted research and increased
institutional ability to calculate unreimbursed indirect costs, including mandatory and voluntary cost
sharing’.
7 The firm-data that have been used for the United States (HHG(1984), HGH(1986),…) are from the
Bureau of Census- NSF survey of R&D expenditures by manufacturing firms. Our data come from a
similar survey set up by the NSF and covering the ‘Academic’ R&D.
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b) University Patents8

Patent counts per university are constructed by merging two databases. From the

USPTO we obtained a database with patent-numbers and assignee-names of the

patents used for the USPTO publication ‘ US Universities and Colleges, Utility Patent

Grants, 1969-1998’9. These patent-numbers were then selected from a database

containing information like citations and patent class, for all US patents issued before

1995. For the university patents, about 95% of the patents are granted within the four

years following the application-year10. Therefor, we focus on patents applied for in

1990. Similarly, we’ll take the citations to patents applied for in 1990. As this implies

that the period over which the patents can receive a citation is fairly small (and

truncated), we construct an ‘expected’ number of citations. For this, we take the

median number of citations over a period of 5 year, received by patents applied for by

the university between 1982 and 1986. Hence, for a university patent applied for in

1986, we consider the citations by US patents applied for in the period 1986-1990

(later years would be incomplete as the patenting process takes 5 years). By taking

citation counts rather than patent counts, we control for quality differences between

patents11.

c) Some descriptive statistics.

Table 1: descriptive statistics.

Mean Std Dev Minimum Maximum variance to mean
Patents 3.11 9.40 0 103.00 28.38

Citations 3.25 10.85 0 133.00 36.23
Expected citations 4.65 18.62 0 206.00 74.56

Log R&D 8.32 2.50 2.39 14.32

In 1990, the average university did three patented inventions and its 1990 patents

were then cited about 3 times. Not surprisingly, there are substantial differences

between universities. The Massachusetts Institute of Technology for example leads
                                                          
8 One should also be aware of the fact that some branch campuses have one common ‘assignee’ , f.e.
the different universities of the University of California all have ‘the Regents of the University of
California’ as assignee.
9 USPTO: United States Patent and Trademark Office.
10 Based on university patents applied for in the period 1980-1985: 95% of the patents that are granted
within 10 years are granted within 5 years. Griliches (1990) similarly notes that for the applications in
1980, about 97% of those that will eventually be granted a patent, had received a patent by 1984.
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both the ranking of the number of patents (103) and the ranking of the number of

citations (133). But as one can notice from table 2 several universities did not receive

even one patent in 1990.

 Table 2: the distribution of the number of patents and citations over universities.
Patents: #univ Cites: #univ Exp. Cites: #univ

0 317 341 357
0<>5 66 47 27
6<>10 35 27 25
11<>15 11 12 5
16<>20 10 9 16

21+ 16 19 26

Note that 70% of the universities with positive R&D have zero patents. This might

seem a huge number but in the patent literature, this is not that exceptional: for

example, Crepon and Duguet’s (1997) sample consists of 451 French manufacturing

firms of which 73% did not apply for a patent and Licht and Zoz (1998) have a

similar percentage in a sample of 1685 German firms.

For each university patent, we also know to which patent class it belongs. Jaffe (1986)

divides these classes over five groups, which Jaffe (1989) then links to academic

disciplines. Using the most recent classification of Jaffe (which has six classes), we

will estimate a cross-section by ‘discipline’12. Table 3 gives for each discipline the

number of patents since 1969, the part of the university patents in the total number of

US patents (period 1969-1998), the number of university patents per billion of US$ in

1990 and the average number of citations per patent13.

                                                                                                                                                                     
11 See Hall et al. (2000) for a survey about the use of patent citations.
12 The mapping of Jaffe’s classification of patents into NSF disciplines is given in the Appendix.
13 The second and the third column are based on USPTO (1998) while the last column is computed on
the basis of citations by patents awarded up to 1994.
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Table 3: the number of patents by disciplinary groups.
Disciplines #patents 69-98 % of total US

patents
Patents per
Billion $

#Cit/Pat

Chemical 6817 1.39 372 0.99
Computers &

Communications
1639 0.75 217 1.22

Drugs & Medical 9532 5.35 44 0.75
Electrical &
Electronic

5094 1.15 138 1.38

Mechanical 1757 0.33 45 1.6
Other 1686 0.31 31 0.87

.

One can see that universities hold mainly (also in the absolute) ‘Drugs and Medical’

patents. Still, the part of universities in the total number of patents is extremely small.

The ‘Drugs and Medical’ patents-group also seems to be one of the more ‘expensive’

ones: for each billion dollar of separately budgeted R&D, universities are granted

about 44 patents. For the same amount of money, they ‘buy’ 217 ‘Computer’ patents

or 372 ‘Chemical’ patents. Finally, ‘Mechanical’ university patents are the patents

that, on average, are most often cited.

5) Econometrics14.

a) University-level data

To take into account the special nature of patent-data (they are count data),

economists tend to use Poisson regressions. In these models, it is assumed that the

chance of having Y patents is defined as following

P(Y|X)= exp(-λ)*λY / Y!

where E[Y|X]=Var[Y|X]= λ=exp(βX), with X containing the explicative variables, in

this case, a constant (β0) and the R&D expenditures (β1).

The Poisson distribution supposes that the conditional mean and the conditional

variance are equal. To relax this assumption, one traditionally uses the negative

binomial distribution (Negbin). The most comprehensive specification of such models

is the Negbink model where the variance is:

                                                          
14 R&D expenditures are in 1998 dollars and in logarithms. In our regressions, we’ll use Eicker-White
standard errors which are heteroskedasticity-consistent.
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Var[Y|X]=E[Y|X]*(1+α*E[Y|X]1-k)

The Negbink model includes both the NegbinI (k=1) model and the NegbinII (k=0)

model.

As mentioned above, the Poisson-model assumes equivalence between the conditional

mean and the conditional variance. The raw data, however, have a variance-mean

ratio of about 28 (88/3.1) which makes it likely that this hypothesis will be violated.

To test whether the data are overdispersed, we used a regression-based test, a Wald-

test and a LR-test as described in Cameron and Trivedi (1997). The three tests all

reject the Poisson-model in favor of both NegbinI and NegbinII. To discriminate

between the latter two models, we use the Vuong-test statistic for non-nested models

Its value, 1.7, points in the direction of accepting NegbinI as does the Negbink model

where k is significantly bigger than 0 but close to 1.

Table 4: Poisson and Negative binomial estimates.
Poisson NegbinI NegbinII Negbink

β0 -9.75
  (0.7)

-9.17
(0.52)

-10.8
(0.73)

-10.3
(0.81)

β1 1.02
(0.06)

0.97
(0.04)

1.1
(0.06)

1.06
(0.07)

α 5.2
(1.1)

0.87
(0.17)

3
(0.76)

K 0.72
(0.14)

Loglik. -761 -501 -520 -499
ML-estimates with Eicker-White standard errors between brackets. All coefficients statistically
significant from zero at the 1%-level.

Next we consider the interpretation of the coefficients. As our R&D variable is in

logarithmic form, coefficients give elasticities. Our estimates point in the direction of

constant returns to scale: an increase of one percent in R&D expenditures will

increase the number of granted patents by one percent.

In table 5, we try to control for quality differences and use the number of times the

patents of university X (and applied for in 1990) have been cited rather than a simple

patent count. In a third specification, we use the ‘expected’ number of citations (as

explained above).
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Table 5: citation production functions.

Citations Expected Citations
Poisson NegbinI Poisson NegbinI

β0 -9.7
  (0.95)

-9.26
(0.67)

-10
(0.81)

-9.8
(0.7)

β1 1.02
(0.08)

0.98
(0.06)

1.07
(0.07)

1.06
(0.05)

α 12.3
(2.3)

26.3
(6.7)

Loglik. -1033 -476 -1720 -480
ML-estimates with Eicker-White standard errors between brackets. All coefficients statistically
significant from zero at the 1%-level.

Controlling for quality only marginally influences our results. The coefficients of the

citation count model are nearly identical to those of the patent count model. The

‘expected’ citation model has somewhat bigger coefficients though never to such an

extent that constant returns to scale can be rejected.

Table 6 compares the observed counts with the predicted counts for the different

patent count models. The predicted counts are obtained by using first the independent

variable-values for each observation to calculate the probabilities of observing 0,1,…

patents and then summing over the individual observations (see Dione and Vanasse

(1992)).

Table 6: # of firms with X patents, observed and predicted
Observed Poisson NegbinI NegbinII Negbink Hurdle ZIP

0 317 270.9 316.1 301.1 314.3 317.0 317.7
1 28 48.9 23.2 43.8 15.9 15.5 16.5
2 10 22.5 15.2 20.5 6.0 11.9 11.1
3 10 15.1 11.7 13.3 2.9 10.0 9.2
4 9 11.9 9.6 9.8 1.5 8.9 8.4
5 9 10.2 8.2 7.6 0.9 8.3 8.0
6 9 8.9 7.0 6.2 0.5 7.9 7.7
7 4 7.9 6.2 5.2 0.3 7.5 7.4
8 10 7.0 5.4 4.4 0.2 7.0 7.0
9 4 6.1 4.8 3.8 0.1 6.5 6.6
10 8 5.4 4.3 3.3 0.1 6.0 6.1

The table illustrates another problem of the Poisson-regression: the excess-zero

problem. Line 2 of the above table shows that while we observed 317 universities that

had no patent, the Poisson-model only predicts 271 zero observations. One can see

that allowing for overdispersion through NegbinI or Negbink already solves the



11

problem. We also experimented with the Hurdle model and the Zero-inflated model

(ZIP - see Crepon and Duguet (1997) and Licht and Zoz (1998) for applications on

firm-data) which lead to similar conclusions.

We further ran some other regression as robustness checks. Using a weighted function

of lagged values (25% of the 1989 R&D, 50 % of the 1988 R&D, 25% of the 1987

R&D) like in Adams and Griliches (1996) or using the sum of the R&D in the

previous five year did not change our results. We also tried to see whether there is a

significant difference between public and private universities. No significant

difference could be found (in 1990, public universities have, on average, less patents

but also less R&D expenditures).

b) Discipline-level data

We now focus on the disciplinary level and estimate patent production functions and

citation production functions for six disciplines.

 Table 7a: Poisson and Negbink: Chemical, Computers and Drugs patents.

Chemical Computers Drugs
Poisson Negbink Poisson Negbink Poisson Negbink

β0 -8.1
(0.56)

-8.2
(0.56)

-5.9
(0.74)

-6.7
(1.05)

-9.7
(0.83)

-9.6
(0.8)

β1 1.04
(0.06)

1.05
(0.06)

0.7
(0.09)

0.81
(0.14)

0.98
(0.07)

0.98
(0.07)

α 1.15
(0.36)

2.9
(0.9)

2.05
(0.56)

k 0.86
(0.15)

0.45
(1.2)

0.87
(0.12)

Loglik. -323 -291 -184 -135 -378 -300
#obs. 354 354 239 239 406 406

#obs>0 110 110 44 44 99 99
ML-estimates with Eicker-White standard errors between brackets. All coefficients statistically
significant from zero at the 1%-level.
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Table 7b: Poisson and Negbink: Electrical, Mechanical and Other patents.
Electrical Mechanical Other

Poisson Negbink Poisson Negbink Poisson Negbink

β0 -7.1
(0.84)

-7.4
(0.61)

-8.3
(1.2)

-8.4
(1.32)

-6.6
(0.57)

-6.7
(0.58)

β1 0.84
(0.09)

0.87
(0.07)

0.85
(0.13)

0.86
(0.14)

0.64
(0.06)

0.64
(0.06)

α 1.88
(0.53)

1.4
(0.26)

0.76
(0.32)

K 0.26*
(0.18)

0.83
(0.38)

0.88
(0.31)

Loglik. -327 -246 -166 -144 -193 -83.5
#obs. 330 330 260 260 385 385

#obs>0 81 81 46 46 58 58
ML-estimates with Eicker-White standard errors between brackets. All coefficients statistically
significant from zero at the 1%-level, except *.

For Chemical and Drugs patents, we find elasticities that are close to what we found

on the university level: an increase of one percent in the funds for these disciplines

increases patents by one percent. For four out of six disciplines, we find elasticities

that are smaller than those we estimated for the university level. But only for the

‘Other’ category, we can reject the constant returns to scale hypothesis: a one percent

increase in funds will increase patents by 0.6 percent.

Next, we estimate the citation-production function on the disciplinary level.

Table 8a: Poisson and Negbink: Chemical, Computers and Drugs patent citations.
Chemical Computers Drugs

Poisson Negbink Poisson Negbink Poisson Negbink

β0 -8.7
(1)

-8.7
(0.99)

-6
(0.83)

-5.5
(0.69)

-8
(0.93)

-7.2
(1.5)

β1 1.10
(0.11)

1.10
(0.11)

0.74
(0.11)

0.68
(0.08)

0.81
(0.08)

0.74
(0.13)

α 5.3
(1.1)

8.5
(2.8)

8*
(4.3)

K 0.89
(0.12)

1.46
(0.44)

Loglik. -419 -259 -251 -127 -433 -257
#obs. 354 354 239 239 406 406

#obs>0 74 74 31 31 72 72
ML-estimates with Eicker-White standard errors between brackets. All coefficients statistically
significant from zero at the 1%-level.
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Table 8b: Poisson and Negbink: Electrical, Mechanical and Other patent citations.
Electrical Mechanical Other

Poisson Negbink Poisson Negbink Poisson Negbink

β0 -7.6
(1.06)

-7.9
(0.9)

-10.4
(1.9)

-10.8
(1.89)

-6.7
(0.81)

-6.3
(0.58)

β1 0.92
(0.11)

0.95
(0.1)

1.11
(0.2)

1.14
(0.19)

0.63
(0.08)

0.59
(0.06)

α 7.22
(1.42)

7.3
(1.9)

2.3
(1)

K 0.68
(0.12)

0.5
(0.19)

1.31
(0.48)

Loglik. -454 -232 -280 -135 -205 -143
#obs. 330 330 260 260 385 385

#obs>0 58 58 31 31 33 33
ML-estimates with Eicker-White standard errors between brackets. All coefficients statistically
significant from zero at the 1%-level.

In addition to the ‘Other’ category, we now also find decreasing returns to scale in the

‘Drugs’ category and the ‘Computers’ category. The coefficients of the other

disciplines, however, are bigger in the citation-regression than in the patent-

regression. Note that Adams and Griliches (1996) found constant returns to scale on

the university level but decreasing returns on the disciplinary level for the production

of scientific articles.  One can explain this phenomenon either by a misclassification

of the R&D expenditures, or by spillovers between the different parts of a university.

Next we pool the six disciplines, using those 106 universities that have expenditures

in each of the categories and received at least one patent. The advantage of this is that

it allows us to use fixed university effects: if big spenders tend to have a Technology

Transfer Office and this office is effective in turning inventions into patents, then

we’ll get a positively biased coefficient on the R&D variable. Including university

dummies, however, would capture such an effect. At the same time, we get rid of the

effects of differences in accounting practices.
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Table 9: the results of the pooled Poisson regression: patent counts.
Patent Counts

Poisson Negative Binomial
β0 -4.2

(0.46)
- - - -

β1 0.52
(0.05)

0.7
(0.06)

0.28
(0.04)

0.28
(0.05)

0.3
(0.11)

DiscDum NO YES NO YES YES
UniDum NO NO YES YES YES
Loglik -1413 -1185 -1035 -867 -860
#obs 636 636 636 636 636

ML-estimates with Eicker-White standard errors between brackets. All coefficients statistically
significant from zero at the 1%-level.

Table 10: the results of the pooled Poisson regression: citation counts.
Citation Counts
Poisson Negative Binomial

β0 -3.3
(0.48)

- - - -

β1 0.44
(0.05)

0.68
(0.08)

0.21
(0.048)

0.34
(0.08)

0.37
(0.08)

DiscDum NO YES NO YES YES
UniDum NO NO YES YES YES
Loglik -1819 -1553 -1264 -867 -860
#obs 558 558 558 636 636

ML-estimates with Eicker-White standard errors between brackets. All coefficients statistically

significant from zero at the 1%-level.

The pooling of the disciplines clearly points towards decreasing returns to scale.

Controlling for disciplinary differences does increase the elasticity somewhat but

constant returns still can be rejected. The dummies of the individual disciplines

further show that, for a given amount of money, ‘Chemistry’ is the most productive

discipline, with about 2 times the number of patents of the “Electrical” category and

of the “Computer Sciences” category. Then follow “Drugs” (4 times), “Mechanical”

(6 times) and “Other” (7.5 times).

Allowing for university effects has the opposite effect: it decreases the sensitivity to

R&D to 0.3. Note further that the university-effects cover a wide range: the university

with the highest effect (MIT) produces 60 times more patents, with the same amount

of money, than the one with lowest effect.

Combining the university and the disciplinary effects finally shows that a one percent

rise in expenditures leads to 0.3 percent more patents. Using citations rather than
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patents leads to similar results: a one percent rise in expenditures leads to a 0.34

percent increase in the number of citations.

6) Some ideas for future research

Empirical studies about university patenting in Europe seem to be nonexistent15.

Janssens (1996), however, studies extensively the laws governing employee and

university inventions in several European countries. She finds that in Germany,

Finland, Sweden and Denmark, the inventions of university scientists are considered

to be the property of the scientist, while in the Netherlands, Italy, Portugal, Austria,

France, Spain, the UK and Greece, the property rights reside by the university. Hence,

simple counts of the patents owned by European universities will be of great interest

and could shed some light about the effects of ownership on the propensity to patent

(though it will be difficult to discover patents with university origins when the

assignee is not the university).

Further, for the US, both data on patents and data on academic R&D are available

since the beginning of the seventies. This makes it possible to test the robustness of

the cross-sectional results by using panel-techniques. The time-dimension will also

allow us to find out whether the introduction of the Bayh-Dole Act really mattered.

Similarly, combining the above data with data on the foundation-dates of the

“Technology Transfer Offices” should enable us to make inferences about the

usefulness of such institutions. Indeed, one would expect that once a university

creates such an office, it gets more patents per US-dollar of research expenditures.

Even more interesting might be a replication of the Jaffe (1989) study. Indeed, he

used data for the seventies, hence a period in which universities only rarely protected

their findings by taking patents. It’s natural to suppose that some of these unprotected

findings will have been patented by nearby-situated firms, thus provoking spillovers.

Hence, it would be interesting to know whether the introduction of Bayh-Dole did not

reduce such spillovers.

                                                          
15 She also gives, for some universities, indications for the number of patents. Meyer-Krahmer and
Schmoch(1998) count, for 1993, 1033 applications for patents by German professors (not
universities!). BMBF(1998) includes a graph that shows that the patent-applications of German
universities increased from about 400 in 1973 to about 1600 in 1997.
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7) Conclusions

This paper has highlighted the ‘direct real effects’ of academic research: academic

R&D expenditures do not only influence the number of patents that are granted to

nearby firms (like Jaffe (1989)), they also significantly influence the number of

patents granted to the university itself. In addition, we found some indications for

constant returns to scale at the institutional level. However, once controlling for fixed

effects, we find, just like the traditional firm-studies, much smaller coefficients

indicating decreasing returns to scale. Moreover, our fixed effects coefficient fall into

the 0.25 - 0.6 range that Cincera (1997) finds when looking at a number of firm-level

studies16.

Research by Henderson et al. (1998) has already shown that university-patents do not

differ (anymore) from firm-patents in terms of quality. Hence, one can conclude quite

safely that, these days, universities resemble firms in several aspects.

                                                          
16 Note this does not necessarily imply that for the same amount of money, they will have the same
number of patents.



17

References

Acs, Z., Audretch, D. and Feldmann, M. (1991), “Real Effects of Academic Research:

Comment”, American Economic Review, vol. 82, nr. 1, p. 363-367.

Adams, J. and Griliches, Z. (1996), “Measuring Science: an Exploration”,

Proceedings of the National Academy of Sciences”, vol. 93, p. 12664-12670.

Adams, J. and Griliches, Z. (1998), “ Research Productivity in a System of Research

Universities”, Annales d’Economie et de Statistique, nr 49/50, p. 127-162.

Anselin, L., Varga, A. and Acs, Z. (1997), “Local Geographic Spillovers between

University Research and High Technology Innovations”, Journal of Urban

Economics, vol. 42, p. 422-448.

Argyres, N. and Liebeskind, J.(1998), “Privatizing the Intellectual Commons:

Universities and the Commercialization of Biotechnology”, Journal of Economic

Behavior & Organization, vol. 35, p. 427-454.

Bania, N., Eberts, R. and Fogarty, M. (1993), “Universities and the Start-Up of new

Companies: Can We Generalize from Route 128 and Silicon Valley”, Review of

Economics and Statistics, p.761-766.

Beeson, P. and Montgomery, E. (1993), “The Effects of Colleges and Universities on

Local Labor Markets”, Review of Economics and Statistics, p.753-761.

Beise, M. and Stahl, H.(1999), “Public Research and Industrial Innovations in

Germany”, Research Policy, vol. 28, p.397-422.

BMBF (2000), “Zur technologischen Leistungsfähigkeit Deutschlands”,

(www.bmbf.de/deutsch/veroeff/index.htm)

Cameron, A. and Trivedi, P. (1997), “Regression Analysis of Count Data”,

Cambridge University Press.

http://www.bmbf.de/deutsch/veroeff/index.htm


18

Cincera, M. (1997), “Patents, R&D and Technological Spillovers at the Firm Level:

Some Evidence from Econometric Count Models for Panel Data “,Journal of Applied

Econometrics, vol. 12, p. 265-280.

Coupé, T. (2000), “Science Is Golden: University Patents as Direct Real Effects of

Academic Research”, working paper.

Crépon, B. and Duguet, E. (1997), “Estimating the Innovation Function from Patent

Numbers: GMM on Count Data Panel”, Journal of applied Econometrics, vol. 12, p.

243-263.

Crépon, B. and Duguet, E. (1997), “Research and Development, Competition, and

Innovation: Pseudo Maximum Likelihood and Simulated Maximum Likelihood

Methods, Applied to Count Data Models with Heterogeneity”, Journal of

Econometrics, vol. 79, p. 355-378.

Dione, G and Vanasse, C. (1992), “Automobile Insurance Ratemaking in the Presence

of Asymmetrical information”, Journal of Applied Econometrics, vol. 7, p. 149-165.

Foltz, J., Barham, B. and Kim, K. (2000), “Universities and Agricultural

Biotechnology Patent Production”, working paper.

Goldberger, Maher, B. and Flattau, P. (1995), “Research-Doctorate Programs in the

United States”, National Academy Press.

Griliches(1991), “Patent Statistics as Economic Indicators: A Survey”, Journal of

Economic Literature, vol. 28, nr. 4, p. 1661-1707.

Hall, B., Griliches, Z. and Hausman, J., (1984), “Patents and R&D: is there a lag?”,

International Economic Review, Vol. 27, nr. 2., p. 265-283.

Hall, B., Jaffe, A. and Trajtenberg, M. (2000), “Market Value and Patent Citations: a

First Look”, NBER working paper 7741.



19

Hausman, J., Hall, B. and Griliches, Z. (1984), “Econometric Models for Count Data

with an Application to the Patent-R&D Relationship”, Econometrica, vol. 52, nr. 4.

Henderson, R.,  Jaffe, A. and Traitenberg, M. (1998), “Universities as a Source of

Commercial Technology: a Detailed Analysis of University Patenting, 1965-1988 ”,

Review of Economics and Statistics, p. 119-127.

Jaffe, A. (1986), “Technological Opportunity and Spillovers of R&D: Evidence from

Firms’ Patents Profits and Market Value”, American Economic Review, vol. 76, nr. 5,

p.984-1001.

Jaffe, A. (1989), “Real Effects of Academic Research”, American Economic Review,

vol. 79, nr. 5 , p. 957-970.

Jaffe, A. and Lerner, J.(1999), “Privatizing R&D: Patent Policy and The

Commercialization of National Laboratory Technologies”, NBER Working Paper

7064.

Janssens, M.(1996), “Uitvindingen in Dienstverband met Bijzondere Aandacht voor

Uitvindingen aan Universiteiten”, Bruylant.

Licht, G. and Zoz, K.(1998), “Patents and R&D, An Econometric Investigation Using

Applications for German, European and US Patents by German Companies”, Annales

d’Economie et de Statistique, nr 49/50, p. 329-360.

Mansfield, E. (1995), “Academic Research Underlying Industrial Innovations:

Sources, Characteristics and Financing”, Review of Economics and Statistics, p. 55-

65.

Mansfield, E. (1998), “Academic Research and Industrial Innovation: an Update of

Empirical Findings ”, Research Policy, vol. 26, p. 773-776.

Meyer-Kramer, F. and Schmoch, U. (1998), “Science-based Technologies:

University-Industry Interactions in Four Fields”, Research Policy, vol. 27, p. 835-851.



20

Mowery, D. and Ziedonis, A. (1999), “The Effects of the Bayh-Dole Act on U.S.

University Research and Technology Transfer: Analyzing Data from Entrants and

Incumbents”, working paper.

NSF issue brief 99-317, “What Are the Sources of Funding for Academically

Performed R&D”, (www.nsf.gov/sbe/srs/issuebrf/sib99317.htm.)

Payne, A. and Siow, A. (1999), “Estimating the Effects of Federal Research Funding

on Universities Using Alumni Representation on Congressional Appropriations

Committees”, working paper.

Powell, W. and Owen-Smith, J. (1998), “Universities and the Market for Intellectual

Property in the Life Sciences”, Journal of Policy Analysis and Management, vol. 17,

nr. 2, p. 253-277.

USPTO, (1999), “US Universities and Colleges, Utility Patent Grants, 1969-1998”.

http://www.nsf.gov/sbe/srs/issuebrf/sib99317.htm.


21

Appendix: Jaffe’s  patent classification and the NSF disciplines.

•  Chemical: Chemistry and Chemical Engineering.

•  Computers and Communications: Computer Science

•  Drugs and Medical: Biology, Medicine, Agricultural Sciences and Other Life

Sciences.

•  Electrical & Electronic: Electrical Engineering, Astronomy and Physics

•  Mechanical: Mechanical Engineering, Civil Engineering, Materials Engineering,

Aerospace Engineering, Other Engineering and Other Physical Sciences.

•  Other: Atmospheric Sciences, Earth Sciences, Oceanography, Other Geosciences,

Mathematics and Statistics, Psychology, Economics, Political Science, Sociology,

Other Social Sciences and Interdisciplinary or Other Sciences.
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